A Bombieri–Vinogradov-type result for exponential sums over Piatetski-Shapiro primes
نویسندگان
چکیده
In this paper, we establish a theorem of Bombieri–Vinogradov type for exponential sums over Piatetski-Shapiro primes p = [n1/γ] with 865/886 < γ 1.
منابع مشابه
Vinogradov’s estimate for exponential sums over primes
1Many of the manipulations of sums in these chapters are hard to follow, and I greatly expand on the calculations in Davenport. The organization of the proof in Davenport seems to be due to Vaughan. I have also used lecture notes by Andreas Strömbergsson, http://www2.math.uu.se/~astrombe/analtalt08/www_notes.pdf, pp. 245–257. Another set of notes, which I have not used, are http://jonismathnote...
متن کاملExplicit upper bounds for exponential sums over primes
We give explicit upper bounds for linear trigonometric sums over primes.
متن کاملTrigonometric sums over primes III
© Université Bordeaux 1, 2003, tous droits réservés. L’accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier do...
متن کاملExponential Sums 1 Statement of Main Result
Let p be a prime number. We consider exponential sums which are expressions of the form S f = a mod p e 2πi f (a) p where f (x) ∈ Z [x] is a polynomial with integer coefficients. More generally, instead of the prime field Z /p we may work over any finite field K with q = p k elements. Let tr : K → Z /p denote the trace operator from K to its prime field. Then, an exponential sum over K is any e...
متن کاملExponential Sums over Points of Elliptic Curves with Reciprocals of Primes
We consider exponential sums with x-coordinates of points qG and q−1G where G is a point of order T on an elliptic curve modulo a prime p and q runs through all primes up to N (with gcd(q, T )= 1 in the case of the points q−1G). We obtain a new bound on exponential sums with q−1G and correct an imprecision in the work of W. D. Banks, J. B. Friedlander, M. Z. Garaev and I. E. Shparlinski on expo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lithuanian Mathematical Journal
سال: 2022
ISSN: ['1573-8825', '0363-1672']
DOI: https://doi.org/10.1007/s10986-022-09579-4